LIMITE ET CONTINUITÉ

I. LIMITE D'UNE FONCTION

1. Limite en un point

Définition : Limite finie en un point

Soit f une fonction définie sur un intervalle pointé de centre a et l un réel. On dit que la fonction f tend vers le réel l quand x tend vers a si :

$$(\forall \varepsilon > 0)(\exists \alpha > 0)(\forall x \in D_f)(0 < |x - a| < \alpha \implies |f(x) - l| < \varepsilon)$$

On note:

$$\lim_{x \to a} f(x) = l$$

Définition : Limite infinie en un point

On dit que la fonction f a pour limite $+\infty$ quand x tend vers a si f(x) devient aussi grand que l'on veut dès que x est suffisamment proche de a.

On note:

$$\lim_{x \to a} f(x) = +\infty$$

Interprétation graphique : La droite d'équation x=a est une asymptote verticale à la courbe de f.

2. Limite à l'infini

Définition: Limite finie à l'infini

On dit que la fonction f a pour limite L quand x tend vers $+\infty$ si f(x) devient aussi proche que l'on veut de L dès que x est suffisamment grand.

On note:

$$\lim_{x \to +\infty} f(x) = L$$

Interprétation graphique : La droite d'équation y = L est une asymptote horizontale à la courbe de f.

3. Opérations sur les limites

Tableaux des opérations sur les limites

Les tableaux suivants résument les résultats des opérations sur les limites (somme, produit, quotient, inverse).

- **Limite de la somme (f+g)**
- Si $\lim f = l$ et $\lim g = l'$, alors $\lim (f + g) = l + l'$.
- Si $\lim f = l$ et $\lim g = +\infty$, alors $\lim (f + g) = +\infty$.
- Si $\lim f = +\infty$ et $\lim g = +\infty$, alors $\lim (f+g) = +\infty$.
- **Forme Indéterminée (FI) :** " $+\infty \infty$ "

- Si $\lim f = l$ et $\lim g = l'$, alors $\lim (fg) = ll'$.
- Si $\lim f = l > 0$ et $\lim g = +\infty$, alors $\lim (fg) = +\infty$.
- Si $\lim f = 0$ et $\lim g = \infty$, c'est une **Forme Indéterminée (FI) :** " $0 \times \infty$ ".
- **Limite du quotient (f/g)**
- Si $\lim f = l$ et $\lim g = l' \neq 0$, alors $\lim (f/g) = l/l'$.
- Si $\lim g = 0$, il faut étudier le signe de g(x) au voisinage du point.
- **Formes Indéterminées (FI) :** " $\frac{0}{0}$ " et " $\frac{\infty}{\infty}$ ".

Technique : Limites des fonctions polynômes et rationnelles à l'infini

- La limite d'une fonction polynôme à l'infini est égale à la limite de son monôme de plus haut degré.
- La limite d'une fonction rationnelle à l'infini est égale à la limite du quotient de ses monômes de plus haut degré.

Exemple:

$$\lim_{x \to +\infty} (3x^2 - 5x + 1) = \lim_{x \to +\infty} (3x^2) = +\infty$$

$$\lim_{x \to -\infty} \frac{2x^3 - x}{5x^3 + 7x^2} = \lim_{x \to -\infty} \frac{2x^3}{5x^3} = \frac{2}{5}$$

II. CONTINUITÉ D'UNE FONCTION EN UN POINT

Définition:

Soit f une fonction définie sur un intervalle de centre a. On dit que la fonction f est **continue en a** si :

- elle admet une limite finie en a
- et $\lim_{x\to a} f(x) = f(a)$.

Continuité à droite et à gauche

- f est **continue à droite de a** si $\lim_{x\to a^+} f(x) = f(a)$.
- f est **continue à gauche de a** si $\lim_{x\to a^-} f(x) = f(a)$.

Théorème

Une fonction est continue en un point a si et seulement si elle est continue à droite et à gauche de a.

III. OPÉRATIONS SUR LES FONCTIONS CONTINUES

Propriétés:

- Les fonctions polynômes, sinus et cosinus sont continues sur \mathbb{R} .
- Toute fonction rationnelle est continue sur chaque intervalle de son domaine de définition.
- Si f et g sont deux fonctions continues en a, alors f+g, $f\times g$ et |f| sont continues en a.
 - Si de plus $g(a) \neq 0$, alors $\frac{1}{g}$ et $\frac{f}{g}$ sont continues en a.
 - Si f est continue en a et $f(a) \geq 0$, alors \sqrt{f} est continue en a.

IV. IMAGE D'UN INTERVALLE PAR UNE FONCTION CONTINUE

Théorème des Valeurs Intermédiaires (TVI)

- Si f est une fonction continue sur un intervalle [a, b], alors pour tout réel k compris entre f(a) et f(b), il existe au moins un réel $c \in [a, b]$ tel que f(c) = k.
- **Corollaire :** Si f est continue sur [a,b] et si $f(a) \times f(b) < 0$, alors l'équation f(x) = 0 admet au moins une solution dans]a,b[.
 - Si de plus f est strictement monotone, alors cette solution est **unique**.

V. FONCTIONS COMPOSÉES ET FONCTIONS RÉCIPROQUES

Composition de deux fonctions

La fonction qui à tout réel x associe g(f(x)) s'appelle la composition de f et g et se note $g \circ f$.

Théorème: Fonction réciproque

Si f une fonction définie, continue et strictement monotone sur un intervalle I, alors on a f admet une fonction réciproque f^{-1} définie de J = f(I) vers I.

La fonction racine n-ième

Soit $n \in \mathbb{N}^*$. La fonction $x \mapsto x^n$ est continue et strictement croissante sur \mathbb{R}^+ . Elle admet donc une fonction réciproque, appelée **fonction racine n-ième**, notée $\sqrt[n]{x}$.

Puissance rationnelle

Soit x un réel positif et r un rationnel $(r = \frac{p}{q} \text{ avec } p \in \mathbb{Z} \text{ et } q \in \mathbb{N}^*)$. On pose :

$$x^r = x^{\frac{p}{q}} = \sqrt[q]{x^p} = (\sqrt[q]{x})^p$$